Cargando…

Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat

Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may...

Descripción completa

Detalles Bibliográficos
Autores principales: Krasnova, Irina N., Justinova, Zuzana, Ladenheim, Bruce, Jayanthi, Subramaniam, McCoy, Michael T., Barnes, Chanel, Warner, John E., Goldberg, Steven R., Cadet, Jean Lud
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808335/
https://www.ncbi.nlm.nih.gov/pubmed/20098750
http://dx.doi.org/10.1371/journal.pone.0008790
_version_ 1782176480439042048
author Krasnova, Irina N.
Justinova, Zuzana
Ladenheim, Bruce
Jayanthi, Subramaniam
McCoy, Michael T.
Barnes, Chanel
Warner, John E.
Goldberg, Steven R.
Cadet, Jean Lud
author_facet Krasnova, Irina N.
Justinova, Zuzana
Ladenheim, Bruce
Jayanthi, Subramaniam
McCoy, Michael T.
Barnes, Chanel
Warner, John E.
Goldberg, Steven R.
Cadet, Jean Lud
author_sort Krasnova, Irina N.
collection PubMed
description Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may better mimic some aspects of human drug-taking behaviors, we examined to what extent this pattern of drug treatment might also result in damage to monoaminergic systems in the brain. Rats were allowed to intravenously self-administer meth (yoked control rats received vehicle) 15 hours per day for 8 days before being euthanized at either 24 hours or at 7 and 14 days after cessation of drug taking. Meth self-administration by the rats was associated with a progressive escalation of daily drug intake to 14 mg/kg per day. Animals that self-administered meth exhibited dose-dependent decreases in striatal dopamine levels during the period of observation. In addition, there were significant reductions in the levels of striatal dopamine transporter and tyrosine hydroxylase proteins. There were also significant decreases in the levels of dopamine, dopamine transporter, and tyrosine hydroxylase in the cortex. In contrast, meth self-administration caused only transient decreases in norepinephrine and serotonin levels in the two brain regions, with these values returning to normal at seven days after cessation of drug taking. Importantly, meth self-administration was associated with significant dose-dependent increases in glial fibrillary acidic protein in both striatum and cortex, with these changes being of greater magnitude in the striatum. These results suggest that meth self-administration by rats is associated with long-term biochemical changes that are reminiscent of those observed in post-mortem brain tissues of chronic meth abusers.
format Text
id pubmed-2808335
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-28083352010-01-23 Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat Krasnova, Irina N. Justinova, Zuzana Ladenheim, Bruce Jayanthi, Subramaniam McCoy, Michael T. Barnes, Chanel Warner, John E. Goldberg, Steven R. Cadet, Jean Lud PLoS One Research Article Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may better mimic some aspects of human drug-taking behaviors, we examined to what extent this pattern of drug treatment might also result in damage to monoaminergic systems in the brain. Rats were allowed to intravenously self-administer meth (yoked control rats received vehicle) 15 hours per day for 8 days before being euthanized at either 24 hours or at 7 and 14 days after cessation of drug taking. Meth self-administration by the rats was associated with a progressive escalation of daily drug intake to 14 mg/kg per day. Animals that self-administered meth exhibited dose-dependent decreases in striatal dopamine levels during the period of observation. In addition, there were significant reductions in the levels of striatal dopamine transporter and tyrosine hydroxylase proteins. There were also significant decreases in the levels of dopamine, dopamine transporter, and tyrosine hydroxylase in the cortex. In contrast, meth self-administration caused only transient decreases in norepinephrine and serotonin levels in the two brain regions, with these values returning to normal at seven days after cessation of drug taking. Importantly, meth self-administration was associated with significant dose-dependent increases in glial fibrillary acidic protein in both striatum and cortex, with these changes being of greater magnitude in the striatum. These results suggest that meth self-administration by rats is associated with long-term biochemical changes that are reminiscent of those observed in post-mortem brain tissues of chronic meth abusers. Public Library of Science 2010-01-20 /pmc/articles/PMC2808335/ /pubmed/20098750 http://dx.doi.org/10.1371/journal.pone.0008790 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Krasnova, Irina N.
Justinova, Zuzana
Ladenheim, Bruce
Jayanthi, Subramaniam
McCoy, Michael T.
Barnes, Chanel
Warner, John E.
Goldberg, Steven R.
Cadet, Jean Lud
Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title_full Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title_fullStr Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title_full_unstemmed Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title_short Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat
title_sort methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808335/
https://www.ncbi.nlm.nih.gov/pubmed/20098750
http://dx.doi.org/10.1371/journal.pone.0008790
work_keys_str_mv AT krasnovairinan methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT justinovazuzana methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT ladenheimbruce methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT jayanthisubramaniam methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT mccoymichaelt methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT barneschanel methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT warnerjohne methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT goldbergstevenr methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat
AT cadetjeanlud methamphetamineselfadministrationisassociatedwithpersistentbiochemicalalterationsinstriatalandcorticaldopaminergicterminalsintherat