Cargando…
Future challenges in colloid and interfacial science
This article deals with topics where I expect special future challenges, exemplifying these by experiments out of my own department. One area where I expect large progress also in view of many technical developments in the past concerns the understanding of the structure of fluid interfaces at the a...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808514/ https://www.ncbi.nlm.nih.gov/pubmed/20098719 http://dx.doi.org/10.1007/s00396-009-2176-z |
Sumario: | This article deals with topics where I expect special future challenges, exemplifying these by experiments out of my own department. One area where I expect large progress also in view of many technical developments in the past concerns the understanding of the structure of fluid interfaces at the atomic level. It is shown by non-linear optical spectroscopies that the free water surface is ice-like and can be “liquefied” by ion adsorption. X-ray fluorescence from the interface demonstrates that ion binding is very specific which cannot be explained by existing theories. A second major area are nonequilibrium features, and one of the old and new ones here is nucleation and growth. This presentation concentrates on effects produced by ultrasound, a well-defined trigger of gas bubble formation. It exhibits high potential for chemistry at extreme conditions but with a reactor at normal conditions. It has special importance for treatment of surfaces that can be also manipulated via controlled surface energies. A third area will concern complex and smart systems with multiple functions in materials and biosciences. As next generation, I anticipate those with feedback control, and examples on this are self-repairing coatings. |
---|