Cargando…
Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms
Detection of clustered microcalcifications (MCs) in mammograms represents a significant step towards successful detection of breast cancer since their existence is one of the early signs of cancer. In this paper, a new framework that integrates Bayesian classifier and a pattern synthesizing scheme f...
Autores principales: | Zyout, Imad, Abdel-Qader, Ikhlas, Jacobs, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810460/ https://www.ncbi.nlm.nih.gov/pubmed/20119490 http://dx.doi.org/10.1155/2009/767805 |
Ejemplares similares
-
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
por: Abu-Amara, Fadi, et al.
Publicado: (2009) -
Classification of Microcalcification Clusters in Digital Mammograms Using a Stack Generalization Based Classifier †
por: Alam, Nashid, et al.
Publicado: (2019) -
Fuzzy technique for microcalcifications clustering in digital mammograms
por: Vivona, Letizia, et al.
Publicado: (2014) -
Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications
por: Loizidou, Kosmia, et al.
Publicado: (2021) -
Automatic Pectoral Muscle Removal and Microcalcification Localization in Digital Mammograms
por: Gómez, Kevin Alejandro Hernández, et al.
Publicado: (2021)