Cargando…
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency...
Autores principales: | Chun, Hyonho, Keleş, Sündüz |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810828/ https://www.ncbi.nlm.nih.gov/pubmed/20107611 http://dx.doi.org/10.1111/j.1467-9868.2009.00723.x |
Ejemplares similares
-
A variant of sparse partial least squares for variable selection and data exploration
por: Olson Hunt, Megan J., et al.
Publicado: (2014) -
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression
por: Drexl, Veronika, et al.
Publicado: (2022) -
Investigation of electrophysiological markers to predict clinical and functional outcome of schizophrenia using sparse partial least square regression
por: Giuliani, L., et al.
Publicado: (2021) -
A Partial Least Squares based algorithm for parsimonious variable selection
por: Mehmood, Tahir, et al.
Publicado: (2011)