Cargando…
The impact of measurement errors in the identification of regulatory networks
BACKGROUND: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to iden...
Autores principales: | Fujita, André, Patriota, Alexandre G, Sato, João R, Miyano, Satoru |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811120/ https://www.ncbi.nlm.nih.gov/pubmed/20003382 http://dx.doi.org/10.1186/1471-2105-10-412 |
Ejemplares similares
-
Functional clustering of time series gene expression data by Granger causality
por: Fujita, André, et al.
Publicado: (2012) -
Modeling gene expression regulatory networks with the sparse vector autoregressive model
por: Fujita, André, et al.
Publicado: (2007) -
Recursive regularization for inferring gene networks from time-course gene expression profiles
por: Shimamura, Teppei, et al.
Publicado: (2009) -
Genomic data assimilation using a higher moment filtering technique for restoration of gene regulatory networks
por: Hasegawa, Takanori, et al.
Publicado: (2015) -
Identification of regulatory modules in genome scale transcription regulatory networks
por: Song, Qi, et al.
Publicado: (2017)