Cargando…

In Vivo RNAi Rescue in Drosophila melanogaster with Genomic Transgenes from Drosophila pseudoobscura

BACKGROUND: Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific k...

Descripción completa

Detalles Bibliográficos
Autores principales: Langer, Christoph C. H., Ejsmont, Radoslaw K., Schönbauer, Cornelia, Schnorrer, Frank, Tomancak, Pavel
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812509/
https://www.ncbi.nlm.nih.gov/pubmed/20126626
http://dx.doi.org/10.1371/journal.pone.0008928
Descripción
Sumario:BACKGROUND: Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species. METHODOLOGY/PRINCIPAL FINDINGS: We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster. CONCLUSIONS/SIGNIFICANCE: The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.