Cargando…

Insights into the Mode of Action of the Two-Peptide Lantibiotic Haloduracin

[Image: see text] Haloduracin, a recently discovered two-peptide lantibiotic composed of the post-translationally modified peptides Halα and Halβ, is shown to have high potency against a range of Gram-positive bacteria and to inhibit spore outgrowth of Bacillus anthracis. The two peptides display op...

Descripción completa

Detalles Bibliográficos
Autores principales: Oman, Trent J., van der Donk, Wilfred A.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2009
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812937/
https://www.ncbi.nlm.nih.gov/pubmed/19678697
http://dx.doi.org/10.1021/cb900194x
Descripción
Sumario:[Image: see text] Haloduracin, a recently discovered two-peptide lantibiotic composed of the post-translationally modified peptides Halα and Halβ, is shown to have high potency against a range of Gram-positive bacteria and to inhibit spore outgrowth of Bacillus anthracis. The two peptides display optimal activity in a 1:1 stoichiometry and have efficacy similar to that of the commercially used lantibiotic nisin. However, haloduracin is more stable at pH 7 than nisin. Despite significant structural differences between the two peptides of haloduracin and those of the two-peptide lantibiotic lacticin 3147, these two systems show similarities in their mode of action. Like Ltnα, Halα binds to a target on the surface of Gram-positive bacteria, and like Ltnβ, the addition of Halβ results in pore formation and potassium efflux. Using Halα mutants, its B- and C-thioether rings are shown to be important but not required for bioactivity. A similar observation was made with mutants of Glu22, a residue that is highly conserved among several lipid II-binding lantibiotics such as mersacidin.