Cargando…
Predicting functional upstream open reading frames in Saccharomyces cerevisiae
BACKGROUND: Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813248/ https://www.ncbi.nlm.nih.gov/pubmed/20042076 http://dx.doi.org/10.1186/1471-2105-10-451 |
_version_ | 1782176900824694784 |
---|---|
author | Selpi Bryant, Christopher H Kemp, Graham JL Sarv, Janeli Kristiansson, Erik Sunnerhagen, Per |
author_facet | Selpi Bryant, Christopher H Kemp, Graham JL Sarv, Janeli Kristiansson, Erik Sunnerhagen, Per |
author_sort | Selpi |
collection | PubMed |
description | BACKGROUND: Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. RESULTS: In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. CONCLUSIONS: Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs. |
format | Text |
id | pubmed-2813248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28132482010-01-29 Predicting functional upstream open reading frames in Saccharomyces cerevisiae Selpi Bryant, Christopher H Kemp, Graham JL Sarv, Janeli Kristiansson, Erik Sunnerhagen, Per BMC Bioinformatics Methodology article BACKGROUND: Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. RESULTS: In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. CONCLUSIONS: Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs. BioMed Central 2009-12-30 /pmc/articles/PMC2813248/ /pubmed/20042076 http://dx.doi.org/10.1186/1471-2105-10-451 Text en Copyright ©2009 Selpi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology article Selpi Bryant, Christopher H Kemp, Graham JL Sarv, Janeli Kristiansson, Erik Sunnerhagen, Per Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title | Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title_full | Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title_fullStr | Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title_full_unstemmed | Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title_short | Predicting functional upstream open reading frames in Saccharomyces cerevisiae |
title_sort | predicting functional upstream open reading frames in saccharomyces cerevisiae |
topic | Methodology article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813248/ https://www.ncbi.nlm.nih.gov/pubmed/20042076 http://dx.doi.org/10.1186/1471-2105-10-451 |
work_keys_str_mv | AT selpi predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae AT bryantchristopherh predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae AT kempgrahamjl predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae AT sarvjaneli predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae AT kristianssonerik predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae AT sunnerhagenper predictingfunctionalupstreamopenreadingframesinsaccharomycescerevisiae |