Cargando…
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
BACKGROUND: In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. Th...
Autores principales: | Boulesteix, Anne-Laure, Strobl, Carolin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813849/ https://www.ncbi.nlm.nih.gov/pubmed/20025773 http://dx.doi.org/10.1186/1471-2288-9-85 |
Ejemplares similares
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
por: Strobl, Carolin, et al.
Publicado: (2007) -
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Decorrelation of the True and Estimated Classifier Errors in High-Dimensional Settings
por: Hanczar, Blaise, et al.
Publicado: (2007) -
Evaluating Microarray-based Classifiers: An Overview
por: Boulesteix, A.-L., et al.
Publicado: (2008) -
Empirical estimation of sequencing error rates using smoothing splines
por: Zhu, Xuan, et al.
Publicado: (2016)