Cargando…
Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies
The majority of cases of Charcot-Marie-Tooth type 1A (CMT1A) and of hereditary neuropathy with a liability to pressure palsies (HNPP) are the result of heterozygosity for the duplication or deletion of peripheral myelin protein 22 gene (PMP22) on 17p11.2. Southern blots, pulsed-field gel electrophor...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815810/ https://www.ncbi.nlm.nih.gov/pubmed/15988805 http://dx.doi.org/10.3349/ymj.2005.46.3.347 |
_version_ | 1782177051754627072 |
---|---|
author | Choi, Jong Rak Lee, Woon Hyoung Sunwoo, Il Nam Lee, Eun Kyung Lee, Chang Hoon Lim, Jong-Baeck |
author_facet | Choi, Jong Rak Lee, Woon Hyoung Sunwoo, Il Nam Lee, Eun Kyung Lee, Chang Hoon Lim, Jong-Baeck |
author_sort | Choi, Jong Rak |
collection | PubMed |
description | The majority of cases of Charcot-Marie-Tooth type 1A (CMT1A) and of hereditary neuropathy with a liability to pressure palsies (HNPP) are the result of heterozygosity for the duplication or deletion of peripheral myelin protein 22 gene (PMP22) on 17p11.2. Southern blots, pulsed-field gel electrophoresis (PFGE), fluorescence in situ hybridization (FISH) and polymorphic marker analysis are currently used diagnostic methods. But they are time-consuming, labor-intensive and have some significant limitations. We describe a rapid realtime quantitative PCR method for determining gene copy number for the identification of DNA duplication or deletion occurring in CMT1A or HNPP and compare the results obtained with REP-PCR. Six patients with CMT1A and 14 patients with HNPP [confirmed by Repeat (REP)-PCR], and 16 patients with suspicious CMT1A and 13 patients with suspicious HNPP [negative REP-PCR], and 15 normal controls were studied. We performed REP-PCR, which amplified a 3.6 Kb region (including a 1.7 Kb recombination hotspot), using specific CMT1A-REP and real-time quantitative PCR on the LightCycler system. Using a comparative threshold cycle (Ct) method and β-globin as a reference gene, the gene copy number of the PMP22 gene was quantified. The PMP22 duplication ratio ranged from 1.35 to 1.74, and the PMP22 deletion ratio from 0.41 to 0.53. The PMP22 ratio in normal controls ranged from 0.81 to 1.12. All 6 patients with CMT1A and 14 patients with HNPP confirmed by REP-PCR were positive by real-time quantitative PCR. Among the 16 suspicious CMT1A and 13 suspicious HNPP with negative REP-PCR, 2 and 4 samples, respectively, were positive by real-time quantitative PCR. Real-time quantitative PCR is a more sensitive and more accurate method than REP-PCR for the detection of PMP22 duplications or deletions, and it is also faster and easier than currently available methods. Therefore, we believe that the real-time quantitative method is useful for diagnosing CMT1A and HNPP. |
format | Text |
id | pubmed-2815810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Yonsei University College of Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-28158102010-02-04 Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies Choi, Jong Rak Lee, Woon Hyoung Sunwoo, Il Nam Lee, Eun Kyung Lee, Chang Hoon Lim, Jong-Baeck Yonsei Med J Original Article The majority of cases of Charcot-Marie-Tooth type 1A (CMT1A) and of hereditary neuropathy with a liability to pressure palsies (HNPP) are the result of heterozygosity for the duplication or deletion of peripheral myelin protein 22 gene (PMP22) on 17p11.2. Southern blots, pulsed-field gel electrophoresis (PFGE), fluorescence in situ hybridization (FISH) and polymorphic marker analysis are currently used diagnostic methods. But they are time-consuming, labor-intensive and have some significant limitations. We describe a rapid realtime quantitative PCR method for determining gene copy number for the identification of DNA duplication or deletion occurring in CMT1A or HNPP and compare the results obtained with REP-PCR. Six patients with CMT1A and 14 patients with HNPP [confirmed by Repeat (REP)-PCR], and 16 patients with suspicious CMT1A and 13 patients with suspicious HNPP [negative REP-PCR], and 15 normal controls were studied. We performed REP-PCR, which amplified a 3.6 Kb region (including a 1.7 Kb recombination hotspot), using specific CMT1A-REP and real-time quantitative PCR on the LightCycler system. Using a comparative threshold cycle (Ct) method and β-globin as a reference gene, the gene copy number of the PMP22 gene was quantified. The PMP22 duplication ratio ranged from 1.35 to 1.74, and the PMP22 deletion ratio from 0.41 to 0.53. The PMP22 ratio in normal controls ranged from 0.81 to 1.12. All 6 patients with CMT1A and 14 patients with HNPP confirmed by REP-PCR were positive by real-time quantitative PCR. Among the 16 suspicious CMT1A and 13 suspicious HNPP with negative REP-PCR, 2 and 4 samples, respectively, were positive by real-time quantitative PCR. Real-time quantitative PCR is a more sensitive and more accurate method than REP-PCR for the detection of PMP22 duplications or deletions, and it is also faster and easier than currently available methods. Therefore, we believe that the real-time quantitative method is useful for diagnosing CMT1A and HNPP. Yonsei University College of Medicine 2005-06-30 2005-06-30 /pmc/articles/PMC2815810/ /pubmed/15988805 http://dx.doi.org/10.3349/ymj.2005.46.3.347 Text en Copyright © 2005 The Yonsei University College of Medicine http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Choi, Jong Rak Lee, Woon Hyoung Sunwoo, Il Nam Lee, Eun Kyung Lee, Chang Hoon Lim, Jong-Baeck Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title | Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title_full | Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title_fullStr | Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title_full_unstemmed | Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title_short | Effectiveness of Real-Time Quantitative PCR Compare to Repeat PCR for the Diagnosis of Charcot-Marie-Tooth Type 1A and Hereditary Neuropathy with Liability to Pressure Palsies |
title_sort | effectiveness of real-time quantitative pcr compare to repeat pcr for the diagnosis of charcot-marie-tooth type 1a and hereditary neuropathy with liability to pressure palsies |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815810/ https://www.ncbi.nlm.nih.gov/pubmed/15988805 http://dx.doi.org/10.3349/ymj.2005.46.3.347 |
work_keys_str_mv | AT choijongrak effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies AT leewoonhyoung effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies AT sunwooilnam effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies AT leeeunkyung effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies AT leechanghoon effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies AT limjongbaeck effectivenessofrealtimequantitativepcrcomparetorepeatpcrforthediagnosisofcharcotmarietoothtype1aandhereditaryneuropathywithliabilitytopressurepalsies |