Cargando…

Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway

Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1–prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cook, Ian H., Evans, Jemma, Maldonado-Pérez, David, Critchley, Hilary O., Sales, Kurt J., Jabbour, Henry N.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816169/
https://www.ncbi.nlm.nih.gov/pubmed/19801577
http://dx.doi.org/10.1093/molehr/gap084
Descripción
Sumario:Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1–prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1–PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium–calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin–nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Rα and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1–PROKR1 signalling pathway regulating IL-11.