Cargando…

Transcriptomic comparison of the retina in two mouse models of diabetes

Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or can arise spontaneously...

Descripción completa

Detalles Bibliográficos
Autores principales: Freeman, Willard M., Bixler, Georgina V., Brucklacher, Robert M., Walsh, Erin, Kimball, Scot R., Jefferson, Leonard S., Bronson, Sarah K.
Formato: Texto
Lenguaje:English
Publicado: Humana Press Inc 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816812/
https://www.ncbi.nlm.nih.gov/pubmed/20157355
http://dx.doi.org/10.1007/s12177-009-9045-3
Descripción
Sumario:Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or can arise spontaneously from genetic mutations. Both models are associated with retinal vascular and neuronal changes. Retinal transcriptomic responses in C57BL/6J mice treated with streptozotocin and Ins2(Akita/+) were compared after 3 months of hyperglycemia. Specific gene expression changes suggest a neurovascular inflammatory response in diabetic retinopathy. Genes common to the two models may represent the response of the retina to hyperglycemia, while changes unique to each model may represent time-dependent disease progression differences in the various models. Further investigation of the commonalities and differences between mouse models of type I diabetes may define cause and effect events in early diabetic retinopathy disease progression. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12177-009-9045-3) contains supplementary material, which is available to authorized users.