Cargando…
High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence
BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapp...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817691/ https://www.ncbi.nlm.nih.gov/pubmed/20078886 http://dx.doi.org/10.1186/1471-2164-11-38 |
_version_ | 1782177227159371776 |
---|---|
author | Hyten, David L Cannon, Steven B Song, Qijian Weeks, Nathan Fickus, Edward W Shoemaker, Randy C Specht, James E Farmer, Andrew D May, Gregory D Cregan, Perry B |
author_facet | Hyten, David L Cannon, Steven B Song, Qijian Weeks, Nathan Fickus, Edward W Shoemaker, Randy C Specht, James E Farmer, Andrew D May, Gregory D Cregan, Perry B |
author_sort | Hyten, David L |
collection | PubMed |
description | BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8× whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism. |
format | Text |
id | pubmed-2817691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28176912010-02-09 High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence Hyten, David L Cannon, Steven B Song, Qijian Weeks, Nathan Fickus, Edward W Shoemaker, Randy C Specht, James E Farmer, Andrew D May, Gregory D Cregan, Perry B BMC Genomics Research Article BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8× whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism. BioMed Central 2010-01-15 /pmc/articles/PMC2817691/ /pubmed/20078886 http://dx.doi.org/10.1186/1471-2164-11-38 Text en Copyright ©2010 Hyten et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hyten, David L Cannon, Steven B Song, Qijian Weeks, Nathan Fickus, Edward W Shoemaker, Randy C Specht, James E Farmer, Andrew D May, Gregory D Cregan, Perry B High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title | High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title_full | High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title_fullStr | High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title_full_unstemmed | High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title_short | High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
title_sort | high-throughput snp discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817691/ https://www.ncbi.nlm.nih.gov/pubmed/20078886 http://dx.doi.org/10.1186/1471-2164-11-38 |
work_keys_str_mv | AT hytendavidl highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT cannonstevenb highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT songqijian highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT weeksnathan highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT fickusedwardw highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT shoemakerrandyc highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT spechtjamese highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT farmerandrewd highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT maygregoryd highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence AT creganperryb highthroughputsnpdiscoverythroughdeepresequencingofareducedrepresentationlibrarytoanchorandorientscaffoldsinthesoybeanwholegenomesequence |