Cargando…
Neural networks for modeling gene-gene interactions in association studies
BACKGROUND: Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are...
Autores principales: | Günther, Frauke, Wawro, Nina, Bammann, Karin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817696/ https://www.ncbi.nlm.nih.gov/pubmed/20030838 http://dx.doi.org/10.1186/1471-2156-10-87 |
Ejemplares similares
-
Artificial neural networks modeling gene-environment interaction
por: Günther, Frauke, et al.
Publicado: (2012) -
Optimization
of neural network architecture using genetic programming improves
detection and modeling of gene-gene interactions in studies of human
diseases
por: Ritchie, Marylyn D, et al.
Publicado: (2003) -
Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network
por: Kordmahalleh, Mina Moradi, et al.
Publicado: (2017) -
Gene Expression Based Leukemia Sub-Classification Using Committee Neural Networks
por: Sewak, Mihir S., et al.
Publicado: (2009) -
A comparative study on the unified model based multifactor dimensionality reduction methods for identifying gene-gene interactions associated with the survival phenotype
por: Lee, Jung Wun, et al.
Publicado: (2021)