Cargando…
Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain
BACKGROUND: Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and speci...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817746/ https://www.ncbi.nlm.nih.gov/pubmed/20161754 http://dx.doi.org/10.1371/journal.pone.0009133 |
_version_ | 1782177240218337280 |
---|---|
author | Biswas, Sunita Reinhard, Judith Oakeshott, John Russell, Robyn Srinivasan, Mandyam V. Claudianos, Charles |
author_facet | Biswas, Sunita Reinhard, Judith Oakeshott, John Russell, Robyn Srinivasan, Mandyam V. Claudianos, Charles |
author_sort | Biswas, Sunita |
collection | PubMed |
description | BACKGROUND: Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee. METHODOLOGY/PRINCIPAL FINDINGS: Whole brain expression levels of neuroligin 1–5 (NLG1–5) and neurexin I (NrxI) were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2–5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (1) there is a lack of synaptic pruning during sensory deprivation; (2) NLG1 expression increases with sensory stimulation; (3) concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4) there is evidence for synaptic compensation after lateralised injury. |
format | Text |
id | pubmed-2817746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28177462010-02-17 Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain Biswas, Sunita Reinhard, Judith Oakeshott, John Russell, Robyn Srinivasan, Mandyam V. Claudianos, Charles PLoS One Research Article BACKGROUND: Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee. METHODOLOGY/PRINCIPAL FINDINGS: Whole brain expression levels of neuroligin 1–5 (NLG1–5) and neurexin I (NrxI) were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2–5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (1) there is a lack of synaptic pruning during sensory deprivation; (2) NLG1 expression increases with sensory stimulation; (3) concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4) there is evidence for synaptic compensation after lateralised injury. Public Library of Science 2010-02-09 /pmc/articles/PMC2817746/ /pubmed/20161754 http://dx.doi.org/10.1371/journal.pone.0009133 Text en Biswas et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Biswas, Sunita Reinhard, Judith Oakeshott, John Russell, Robyn Srinivasan, Mandyam V. Claudianos, Charles Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title | Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title_full | Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title_fullStr | Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title_full_unstemmed | Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title_short | Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain |
title_sort | sensory regulation of neuroligins and neurexin i in the honeybee brain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817746/ https://www.ncbi.nlm.nih.gov/pubmed/20161754 http://dx.doi.org/10.1371/journal.pone.0009133 |
work_keys_str_mv | AT biswassunita sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain AT reinhardjudith sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain AT oakeshottjohn sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain AT russellrobyn sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain AT srinivasanmandyamv sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain AT claudianoscharles sensoryregulationofneuroliginsandneurexiniinthehoneybeebrain |