Cargando…
Metabolic engineering of Agrobacterium sp. strain ATCC 31749 for production of an α-Gal epitope
BACKGROUND: Oligosaccharides containing a terminal Gal-α1,3-Gal moiety are collectively known as α-Gal epitopes. α-Gal epitopes are integral components of several medical treatments under development, including flu and HIV vaccines as well as cancer treatments. The difficulty associated with synthes...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818619/ https://www.ncbi.nlm.nih.gov/pubmed/20067629 http://dx.doi.org/10.1186/1475-2859-9-1 |
Sumario: | BACKGROUND: Oligosaccharides containing a terminal Gal-α1,3-Gal moiety are collectively known as α-Gal epitopes. α-Gal epitopes are integral components of several medical treatments under development, including flu and HIV vaccines as well as cancer treatments. The difficulty associated with synthesizing the α-Gal epitope hinders the development and application of these treatments due to the limited availability and high cost of the α-Gal epitope. This work illustrates the development of a whole-cell biocatalyst for synthesizing the α-Gal epitope, Gal-α1,3-Lac. RESULTS: Agrobacterium sp. ATCC 31749 was engineered to produce Gal-α1,3-Lac by the introduction of a UDP-galactose 4'-epimerase:α1,3-galactosyltransferase fusion enzyme. The engineered Agrobacterium synthesized 0.4 g/L of the α-Gal epitope. Additional metabolic engineering efforts addressed the factors limiting α-Gal epitope production, namely the availability of the two substrates, lactose and UDP-glucose. Through expression of a lactose permease, the intracellular lactose concentration increased by 60 to 110%, subsequently leading to an improvement in Gal-α1,3-Lac production. Knockout of the curdlan synthase gene increased UDP-glucose availability by eliminating the consumption of UDP-glucose for synthesis of the curdlan polysaccharide. With these additional engineering efforts, the final engineered strain synthesized approximately 1 g/L of Gal-α1,3-Lac. CONCLUSIONS: The Agrobacterium biocatalyst developed in this work synthesizes gram-scale quantities of α-Gal epitope and does not require expensive cofactors or permeabilization, making it a useful biocatalyst for industrial production of the α-Gal epitope. Furthermore, the engineered Agrobacterium, with increased lactose uptake and improved UDP-glucose availability, is a promising host for the production of other medically-relevant oligosaccharides. |
---|