Cargando…
A method to predict breast cancer stage using Medicare claims
BACKGROUND: In epidemiologic studies, cancer stage is an important predictor of outcomes. However, cancer stage is typically unavailable in medical insurance claims datasets, thus limiting the usefulness of such data for epidemiologic studies. Therefore, we sought to develop an algorithm to predict...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818641/ https://www.ncbi.nlm.nih.gov/pubmed/20145734 http://dx.doi.org/10.1186/1742-5573-7-1 |
_version_ | 1782177274383040512 |
---|---|
author | Smith, Grace L Shih, Ya-Chen T Giordano, Sharon H Smith, Benjamin D Buchholz, Thomas A |
author_facet | Smith, Grace L Shih, Ya-Chen T Giordano, Sharon H Smith, Benjamin D Buchholz, Thomas A |
author_sort | Smith, Grace L |
collection | PubMed |
description | BACKGROUND: In epidemiologic studies, cancer stage is an important predictor of outcomes. However, cancer stage is typically unavailable in medical insurance claims datasets, thus limiting the usefulness of such data for epidemiologic studies. Therefore, we sought to develop an algorithm to predict cancer stage based on covariates available from claims-based data. METHODS: We identified a cohort of 77,306 women age ≥ 66 years with stage I-IV breast cancer, using the Surveillence Epidemiology and End Results (SEER)-Medicare database. We formulated an algorithm to predict cancer stage using covariates (demographic, tumor, and treatment characteristics) obtained from claims. Logistic regression models derived prediction equations in a training set, and equations' test characteristics (sensitivity, specificity, positive predictive value (PPV), and negative predictive value [NPV]) were calculated in a validation set. RESULTS: Of the entire sample of women diagnosed with invasive breast cancer, 51% had stage I; 26% stage II; 11% stage III; and 4% stage IV disease. The equation predicting stage IV disease achieved sensitivity of 81%, specificity 89%, positive predictive value (PPV) 24%, and negative predictive value (NPV) 99%, while the equation distinguishing stage I/II from stage III disease achieved sensitivity 83%, specificity 78%, PPV 98%, and NPV 31%. Combined, the equations most accurately identified early stage disease and ascertained a sample in which 98% of patients were stage I or II. CONCLUSIONS: A claims-based algorithm was utilized to predict breast cancer stage, and was particularly successful when used to identify early stage disease. These prediction equations may be applied in future studies of breast cancer patients, substantially improving the utility of claims-based studies in this group. This method may similarly be employed to develop algorithms permitting claims-based epidemiologic studies of patients with other cancers. |
format | Text |
id | pubmed-2818641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28186412010-02-10 A method to predict breast cancer stage using Medicare claims Smith, Grace L Shih, Ya-Chen T Giordano, Sharon H Smith, Benjamin D Buchholz, Thomas A Epidemiol Perspect Innov Methodology BACKGROUND: In epidemiologic studies, cancer stage is an important predictor of outcomes. However, cancer stage is typically unavailable in medical insurance claims datasets, thus limiting the usefulness of such data for epidemiologic studies. Therefore, we sought to develop an algorithm to predict cancer stage based on covariates available from claims-based data. METHODS: We identified a cohort of 77,306 women age ≥ 66 years with stage I-IV breast cancer, using the Surveillence Epidemiology and End Results (SEER)-Medicare database. We formulated an algorithm to predict cancer stage using covariates (demographic, tumor, and treatment characteristics) obtained from claims. Logistic regression models derived prediction equations in a training set, and equations' test characteristics (sensitivity, specificity, positive predictive value (PPV), and negative predictive value [NPV]) were calculated in a validation set. RESULTS: Of the entire sample of women diagnosed with invasive breast cancer, 51% had stage I; 26% stage II; 11% stage III; and 4% stage IV disease. The equation predicting stage IV disease achieved sensitivity of 81%, specificity 89%, positive predictive value (PPV) 24%, and negative predictive value (NPV) 99%, while the equation distinguishing stage I/II from stage III disease achieved sensitivity 83%, specificity 78%, PPV 98%, and NPV 31%. Combined, the equations most accurately identified early stage disease and ascertained a sample in which 98% of patients were stage I or II. CONCLUSIONS: A claims-based algorithm was utilized to predict breast cancer stage, and was particularly successful when used to identify early stage disease. These prediction equations may be applied in future studies of breast cancer patients, substantially improving the utility of claims-based studies in this group. This method may similarly be employed to develop algorithms permitting claims-based epidemiologic studies of patients with other cancers. BioMed Central 2010-01-15 /pmc/articles/PMC2818641/ /pubmed/20145734 http://dx.doi.org/10.1186/1742-5573-7-1 Text en Copyright ©2010 Smith et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Smith, Grace L Shih, Ya-Chen T Giordano, Sharon H Smith, Benjamin D Buchholz, Thomas A A method to predict breast cancer stage using Medicare claims |
title | A method to predict breast cancer stage using Medicare claims |
title_full | A method to predict breast cancer stage using Medicare claims |
title_fullStr | A method to predict breast cancer stage using Medicare claims |
title_full_unstemmed | A method to predict breast cancer stage using Medicare claims |
title_short | A method to predict breast cancer stage using Medicare claims |
title_sort | method to predict breast cancer stage using medicare claims |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818641/ https://www.ncbi.nlm.nih.gov/pubmed/20145734 http://dx.doi.org/10.1186/1742-5573-7-1 |
work_keys_str_mv | AT smithgracel amethodtopredictbreastcancerstageusingmedicareclaims AT shihyachent amethodtopredictbreastcancerstageusingmedicareclaims AT giordanosharonh amethodtopredictbreastcancerstageusingmedicareclaims AT smithbenjamind amethodtopredictbreastcancerstageusingmedicareclaims AT buchholzthomasa amethodtopredictbreastcancerstageusingmedicareclaims AT smithgracel methodtopredictbreastcancerstageusingmedicareclaims AT shihyachent methodtopredictbreastcancerstageusingmedicareclaims AT giordanosharonh methodtopredictbreastcancerstageusingmedicareclaims AT smithbenjamind methodtopredictbreastcancerstageusingmedicareclaims AT buchholzthomasa methodtopredictbreastcancerstageusingmedicareclaims |