Cargando…
Multiple Native States Reveal Persistent Ruggedness of an RNA Folding Landscape
According to the “thermodynamic hypothesis”, the sequence of a biological macromolecule defines its folded, active structure as a global energy minimum on the folding landscape.1,2 But the enormous complexity of folding landscapes of large macromolecules raises a question: Is there indeed a unique g...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818749/ https://www.ncbi.nlm.nih.gov/pubmed/20130651 http://dx.doi.org/10.1038/nature08717 |
Sumario: | According to the “thermodynamic hypothesis”, the sequence of a biological macromolecule defines its folded, active structure as a global energy minimum on the folding landscape.1,2 But the enormous complexity of folding landscapes of large macromolecules raises a question: Is there indeed a unique global energy minimum corresponding to a unique native conformation, or are there deep local minima corresponding to alternative active conformations?3 Folding of many proteins is well described by two-state models, leading to highly simplified representations of protein folding landscapes with a single native conformation.4,5 Nevertheless, accumulating experimental evidence suggests a more complex topology of folding landscapes with multiple active conformations that can take seconds or longer to interconvert.6,7,8 Here we employ single molecule experiments to demonstrate that an RNA enzyme folds into multiple distinct native states that interconvert much slower than the time scale of catalysis. These data demonstrate that the severe ruggedness of RNA folding landscapes extends into conformational space occupied by native conformations. |
---|