Cargando…
Phosphoprotein Enriched in Astrocytes 15 kDa (PEA-15) Reprograms Growth Factor Signaling by Inhibiting Threonine Phosphorylation of Fibroblast Receptor Substrate 2α
Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase p...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820429/ https://www.ncbi.nlm.nih.gov/pubmed/20032303 http://dx.doi.org/10.1091/mbc.E09-08-0659 |
Sumario: | Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway. |
---|