Cargando…
Concerted evolution of duplicated mitochondrial control regions in three related seabird species
BACKGROUND: Many population genetic and phylogenetic analyses of mitochondrial DNA (mtDNA) assume that mitochondrial genomes do not undergo recombination. Recently, concerted evolution of duplicated mitochondrial control regions has been documented in a range of taxa. Although the molecular mechanis...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820450/ https://www.ncbi.nlm.nih.gov/pubmed/20074358 http://dx.doi.org/10.1186/1471-2148-10-14 |
_version_ | 1782177371538849792 |
---|---|
author | Morris-Pocock, James A Taylor, Scott A Birt, Tim P Friesen, Vicki L |
author_facet | Morris-Pocock, James A Taylor, Scott A Birt, Tim P Friesen, Vicki L |
author_sort | Morris-Pocock, James A |
collection | PubMed |
description | BACKGROUND: Many population genetic and phylogenetic analyses of mitochondrial DNA (mtDNA) assume that mitochondrial genomes do not undergo recombination. Recently, concerted evolution of duplicated mitochondrial control regions has been documented in a range of taxa. Although the molecular mechanism that facilitates concerted evolution is unknown, all proposed mechanisms involve mtDNA recombination. RESULTS: Here, we document a duplication of a large region (cytochrome b, tRNA(Thr), tRNA(Pro), ND6, tRNA(Glu )and the control region) in the mitochondrial genome of three related seabird species. To investigate the evolution of duplicate control regions, we sequenced both control region copies (CR1 and CR2) from 21 brown (Sula leucogaster), 21 red-footed (S. sula) and 21 blue-footed boobies (S. nebouxii). Phylogenetic analysis suggested that the duplicated control regions are predominantly evolving in concert; however, approximately 51 base pairs at the 5' end of CR1 and CR2 exhibited a discordant phylogenetic signal and appeared to be evolving independently. CONCLUSIONS: Both the structure of the duplicated region and the conflicting phylogenetic signals are remarkably similar to a pattern found in Thalassarche albatrosses, which are united with boobies in a large clade that includes all procellariiform and most pelecaniform seabirds. Therefore we suggest that concerted evolution of duplicated control regions either is taxonomically widespread within seabirds, or that it has evolved many times. |
format | Text |
id | pubmed-2820450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28204502010-02-12 Concerted evolution of duplicated mitochondrial control regions in three related seabird species Morris-Pocock, James A Taylor, Scott A Birt, Tim P Friesen, Vicki L BMC Evol Biol Research article BACKGROUND: Many population genetic and phylogenetic analyses of mitochondrial DNA (mtDNA) assume that mitochondrial genomes do not undergo recombination. Recently, concerted evolution of duplicated mitochondrial control regions has been documented in a range of taxa. Although the molecular mechanism that facilitates concerted evolution is unknown, all proposed mechanisms involve mtDNA recombination. RESULTS: Here, we document a duplication of a large region (cytochrome b, tRNA(Thr), tRNA(Pro), ND6, tRNA(Glu )and the control region) in the mitochondrial genome of three related seabird species. To investigate the evolution of duplicate control regions, we sequenced both control region copies (CR1 and CR2) from 21 brown (Sula leucogaster), 21 red-footed (S. sula) and 21 blue-footed boobies (S. nebouxii). Phylogenetic analysis suggested that the duplicated control regions are predominantly evolving in concert; however, approximately 51 base pairs at the 5' end of CR1 and CR2 exhibited a discordant phylogenetic signal and appeared to be evolving independently. CONCLUSIONS: Both the structure of the duplicated region and the conflicting phylogenetic signals are remarkably similar to a pattern found in Thalassarche albatrosses, which are united with boobies in a large clade that includes all procellariiform and most pelecaniform seabirds. Therefore we suggest that concerted evolution of duplicated control regions either is taxonomically widespread within seabirds, or that it has evolved many times. BioMed Central 2010-01-14 /pmc/articles/PMC2820450/ /pubmed/20074358 http://dx.doi.org/10.1186/1471-2148-10-14 Text en Copyright ©2010 Morris-Pocock et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Morris-Pocock, James A Taylor, Scott A Birt, Tim P Friesen, Vicki L Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title | Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title_full | Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title_fullStr | Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title_full_unstemmed | Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title_short | Concerted evolution of duplicated mitochondrial control regions in three related seabird species |
title_sort | concerted evolution of duplicated mitochondrial control regions in three related seabird species |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820450/ https://www.ncbi.nlm.nih.gov/pubmed/20074358 http://dx.doi.org/10.1186/1471-2148-10-14 |
work_keys_str_mv | AT morrispocockjamesa concertedevolutionofduplicatedmitochondrialcontrolregionsinthreerelatedseabirdspecies AT taylorscotta concertedevolutionofduplicatedmitochondrialcontrolregionsinthreerelatedseabirdspecies AT birttimp concertedevolutionofduplicatedmitochondrialcontrolregionsinthreerelatedseabirdspecies AT friesenvickil concertedevolutionofduplicatedmitochondrialcontrolregionsinthreerelatedseabirdspecies |