Cargando…

Virtual screening of bioassay data

BACKGROUND: There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a l...

Descripción completa

Detalles Bibliográficos
Autor principal: Schierz, Amanda C
Formato: Texto
Lenguaje:English
Publicado: Springer 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820499/
https://www.ncbi.nlm.nih.gov/pubmed/20150999
http://dx.doi.org/10.1186/1758-2946-1-21
_version_ 1782177383368884224
author Schierz, Amanda C
author_facet Schierz, Amanda C
author_sort Schierz, Amanda C
collection PubMed
description BACKGROUND: There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a low ratio of Active compounds to Inactive compounds. This paper first discusses these three problems and then a selection of Weka cost-sensitive classifiers (Naive Bayes, SVM, C4.5 and Random Forest) are applied to a variety of bioassay datasets. RESULTS: Pharmaceutical bioassay data is not readily available to the academic community. The data held at PubChem is not curated and there is a lack of detailed cross-referencing between Primary and Confirmatory screening assays. With regard to the number of false positives that occur in the primary screening process, the analysis carried out has been shallow due to the lack of cross-referencing mentioned above. In six cases found, the average percentage of false positives from the High-Throughput Primary screen is quite high at 64%. For the cost-sensitive classification, Weka's implementations of the Support Vector Machine and C4.5 decision tree learner have performed relatively well. It was also found, that the setting of the Weka cost matrix is dependent on the base classifier used and not solely on the ratio of class imbalance. CONCLUSIONS: Understandably, pharmaceutical data is hard to obtain. However, it would be beneficial to both the pharmaceutical industry and to academics for curated primary screening and corresponding confirmatory data to be provided. Two benefits could be gained by employing virtual screening techniques to bioassay data. First, by reducing the search space of compounds to be screened and secondly, by analysing the false positives that occur in the primary screening process, the technology may be improved. The number of false positives arising from primary screening leads to the issue of whether this type of data should be used for virtual screening. Care when using Weka's cost-sensitive classifiers is needed - across the board misclassification costs based on class ratios should not be used when comparing differing classifiers for the same dataset.
format Text
id pubmed-2820499
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Springer
record_format MEDLINE/PubMed
spelling pubmed-28204992010-02-12 Virtual screening of bioassay data Schierz, Amanda C J Cheminform Research Article BACKGROUND: There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a low ratio of Active compounds to Inactive compounds. This paper first discusses these three problems and then a selection of Weka cost-sensitive classifiers (Naive Bayes, SVM, C4.5 and Random Forest) are applied to a variety of bioassay datasets. RESULTS: Pharmaceutical bioassay data is not readily available to the academic community. The data held at PubChem is not curated and there is a lack of detailed cross-referencing between Primary and Confirmatory screening assays. With regard to the number of false positives that occur in the primary screening process, the analysis carried out has been shallow due to the lack of cross-referencing mentioned above. In six cases found, the average percentage of false positives from the High-Throughput Primary screen is quite high at 64%. For the cost-sensitive classification, Weka's implementations of the Support Vector Machine and C4.5 decision tree learner have performed relatively well. It was also found, that the setting of the Weka cost matrix is dependent on the base classifier used and not solely on the ratio of class imbalance. CONCLUSIONS: Understandably, pharmaceutical data is hard to obtain. However, it would be beneficial to both the pharmaceutical industry and to academics for curated primary screening and corresponding confirmatory data to be provided. Two benefits could be gained by employing virtual screening techniques to bioassay data. First, by reducing the search space of compounds to be screened and secondly, by analysing the false positives that occur in the primary screening process, the technology may be improved. The number of false positives arising from primary screening leads to the issue of whether this type of data should be used for virtual screening. Care when using Weka's cost-sensitive classifiers is needed - across the board misclassification costs based on class ratios should not be used when comparing differing classifiers for the same dataset. Springer 2009-12-22 /pmc/articles/PMC2820499/ /pubmed/20150999 http://dx.doi.org/10.1186/1758-2946-1-21 Text en Copyright © 2009 Schierz; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Schierz, Amanda C
Virtual screening of bioassay data
title Virtual screening of bioassay data
title_full Virtual screening of bioassay data
title_fullStr Virtual screening of bioassay data
title_full_unstemmed Virtual screening of bioassay data
title_short Virtual screening of bioassay data
title_sort virtual screening of bioassay data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820499/
https://www.ncbi.nlm.nih.gov/pubmed/20150999
http://dx.doi.org/10.1186/1758-2946-1-21
work_keys_str_mv AT schierzamandac virtualscreeningofbioassaydata