Cargando…
MIClique: An Algorithm to Identify Differentially Coexpressed Disease Gene Subset from Microarray Data
Computational analysis of microarray data has provided an effective way to identify disease-related genes. Traditional disease gene selection methods from microarray data such as statistical test always focus on differentially expressed genes in different samples by individual gene prioritization. T...
Autores principales: | Zhang, Huanping, Song, Xiaofeng, Wang, Huinan, Zhang, Xiaobai |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822236/ https://www.ncbi.nlm.nih.gov/pubmed/20169000 http://dx.doi.org/10.1155/2009/642524 |
Ejemplares similares
-
DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data
por: Liu, Bao-Hong, et al.
Publicado: (2010) -
Gene coexpression analysis in Arabidopsis thaliana based on public microarray data
por: Zogopoulos, Vasileios L., et al.
Publicado: (2022) -
Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network
por: Jiang, Xue, et al.
Publicado: (2016) -
Meta-coexpression conservation analysis of microarray data: a "subset" approach provides insight into brain-derived neurotrophic factor regulation
por: Aid-Pavlidis, Tamara, et al.
Publicado: (2009) -
Crucial Genes in Aortic Dissection Identified by Weighted Gene Coexpression Network Analysis
por: Zhang, Hongliang, et al.
Publicado: (2022)