Cargando…

Molecular mechanism by which pioglitazone preserves pancreatic β-cells in obese diabetic mice: evidence for acute and chronic actions as a PPARγ agonist

Pioglitazone preserves pancreatic β-cell morphology and function in diabetic animal models. In this study, we investigated the molecular mechanisms by which pioglitazone protects β-cells in diabetic db/db mice. In addition to the morphological analysis of the islets, gene expression profiles of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanda, Yukiko, Shimoda, Masashi, Hamamoto, Sumiko, Tawaramoto, Kazuhito, Kawasaki, Fumiko, Hashiramoto, Mitsuru, Nakashima, Koji, Matsuki, Michihiro, Kaku, Kohei
Formato: Texto
Lenguaje:English
Publicado: American Physiological Society 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822485/
https://www.ncbi.nlm.nih.gov/pubmed/19920213
http://dx.doi.org/10.1152/ajpendo.00388.2009
Descripción
Sumario:Pioglitazone preserves pancreatic β-cell morphology and function in diabetic animal models. In this study, we investigated the molecular mechanisms by which pioglitazone protects β-cells in diabetic db/db mice. In addition to the morphological analysis of the islets, gene expression profiles of the pancreatic islet were analyzed using laser capture microdissection and were compared with real-time RT-PCR of db/db and nondiabetic m/m mice treated with or without pioglitazone for 2 wk or 2 days. Pioglitazone treatment (2 wk) ameliorated dysmetabolism, increased islet insulin content, restored glucose-stimulated insulin secretion, and preserved β-cell mass in db/db mice but had no significant effects in m/m mice. Pioglitazone upregulated genes that promote cell differentiation/proliferation in diabetic and nondiabetic mice. In db/db mice, pioglitazone downregulated the apoptosis-promoting caspase-activated DNase gene and upregulated anti-apoptosis-related genes. The above-mentioned effects of pioglitazone treatment were also observed after 2 days of treatment. By contrast, the oxidative stress-promoting NADPH oxidase gene was downregulated, and antioxidative stress-related genes were upregulated, in db/db mice treated with pioglitazone for 2 wk, rather than 2 days. Morphometric results for proliferative cell number antigen and 4-hydroxy-2-noneal modified protein were consistent with the results of gene expression analysis. The present results strongly suggest that pioglitazone preserves β-cell mass in diabetic mice mostly by two ways; directly, by acceleration of cell differentiation/proliferation and suppression of apoptosis (acute effect); and indirectly, by deceleration of oxidative stress because of amelioration of the underlying metabolic disorder (chronic effect).