Cargando…

Complex sense-antisense architecture of TNFAIP1/POLDIP2 on 17q11.2 represents a novel transcriptional structural-functional gene module involved in breast cancer progression

BACKGROUND: A sense-antisense gene pair (SAGP) is a gene pair where two oppositely transcribed genes share a common nucleotide sequence region. In eukaryotic genomes, SAGPs can be organized in complex sense-antisense architectures (CSAGAs) in which at least one sense gene shares loci with two or mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Grinchuk, Oleg V, Motakis, Efthimios, Kuznetsov, Vladimir A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822537/
https://www.ncbi.nlm.nih.gov/pubmed/20158880
http://dx.doi.org/10.1186/1471-2164-11-S1-S9
Descripción
Sumario:BACKGROUND: A sense-antisense gene pair (SAGP) is a gene pair where two oppositely transcribed genes share a common nucleotide sequence region. In eukaryotic genomes, SAGPs can be organized in complex sense-antisense architectures (CSAGAs) in which at least one sense gene shares loci with two or more antisense partners. As shown in several case studies, SAGPs may be involved in cancers, neurological diseases and complex syndromes. However, CSAGAs have not yet been characterized in the context of human disease or cancer. RESULTS: We characterize five genes (TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199) organized in a CSAGA on 17q11.2 (we term this the TNFAIP1/POLDIP2 CSAGA) and demonstrate their strong and reproducible co-regulatory transcription pattern in breast cancer tumours. Genes of the TNFAIP1/POLDIP2 CSAGA are located inside the smallest region of recurrent amplification on 17q11.2 and their expression profile correlates with the DNA copy number of the region. Survival analysis of a group of 410 breast cancer patients revealed significant survival-associated individual genes and gene pairs in the TNFAIP1/POLDIP2 CSAGA. Moreover, several of the gene pairs associated with survival, demonstrated synergistic effects. Expression of genes-members of the TNFAIP1/POLDIP2 CSAGA also strongly correlated with expression of genes of ERBB2 core region of recurrent amplification on 17q12. We clearly demonstrate that the observed co-regulatory transcription profile of the TNFAIP1/POLDIP2 CSAGA is maintained not only by a DNA amplification mechanism, but also by chromatin remodelling and local transcription activation. CONCLUSION: We have identified a novel TNFAIP1/POLDIP2 CSAGA and characterized its co-regulatory transcription profile in cancerous breast tissues. We suggest that the TNFAIP1/POLDIP2 CSAGA represents a clinically significant transcriptional structural-functional gene module associated with amplification of the genomic region on 17q11.2 and correlated with expression ERBB2 amplicon core genes in breast cancer. Co-expression pattern of this module correlates with histological grades and a poor prognosis in breast cancer when over-expressed. TNFAIP1/POLDIP2 CSAGA maps the risks of breast cancer relapse onto the complex genomic locus on 17q11.2.