Cargando…
Induction of IFN-αβ enables Listeria monocytogenes to suppress macrophage activation by IFN-γ
Production of type I interferon (IFN; IFN-αβ) increases host susceptibility to Listeria monocytogenes, whereas type II IFN (IFN-γ) activates macrophages to resist infection. We show that these opposing immunological effects of IFN-αβ and IFN-γ occur because of cross talk between the respective signa...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822610/ https://www.ncbi.nlm.nih.gov/pubmed/20123961 http://dx.doi.org/10.1084/jem.20091746 |
Sumario: | Production of type I interferon (IFN; IFN-αβ) increases host susceptibility to Listeria monocytogenes, whereas type II IFN (IFN-γ) activates macrophages to resist infection. We show that these opposing immunological effects of IFN-αβ and IFN-γ occur because of cross talk between the respective signaling pathways. We found that cultured macrophages infected with L. monocytogenes were refractory to IFN-γ treatment as a result of down-regulation of the IFN-γ receptor (IFNGR). The soluble factor responsible for these effects was identified as host IFN-αβ. Accordingly, macrophages and dendritic cells (DCs) showed reduced IFNGR1 expression and reduced responsiveness to IFN-γ during systemic infection of IFN-αβ–responsive mice. Furthermore, the increased resistance of mice lacking the IFN-αβ receptor (IFNAR(−/−)) to L. monocytogenes correlated with increased expression of IFN-γ–dependent activation markers by macrophages and DCs and was reversed by depletion of IFN-γ. Thus, IFN-αβ produced in response to bacterial infection and other stimuli antagonizes the host response to IFN-γ by down-regulating the IFNGR. Such cross talk permits prioritization of IFN-αβ–type immune responses and may contribute to the beneficial effects of IFN-β in treatment of inflammatory diseases such as multiple sclerosis. |
---|