Cargando…
Searching for functional gene modules with interaction component models
BACKGROUND: Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and g...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823677/ https://www.ncbi.nlm.nih.gov/pubmed/20100324 http://dx.doi.org/10.1186/1752-0509-4-4 |
_version_ | 1782177661253058560 |
---|---|
author | Parkkinen, Juuso A Kaski, Samuel |
author_facet | Parkkinen, Juuso A Kaski, Samuel |
author_sort | Parkkinen, Juuso A |
collection | PubMed |
description | BACKGROUND: Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions. RESULTS: We formulate a generative probabilistic model for protein-protein interaction links and introduce two ways for including gene expression data into the model. The model finds interaction components, which can be interpreted as overlapping clusters or functional modules. We demonstrate the performance on two data sets of yeast Saccharomyces cerevisiae. Our methods outperform a representative set of earlier models in the task of finding biologically relevant modules having enriched functional classes. CONCLUSIONS: Combining protein interaction and gene expression data with a probabilistic generative model improves discovery of modules compared to approaches based on either data source alone. With a fairly simple model we can find biologically relevant modules better than with alternative methods, and in addition the modules may be inherently overlapping in the sense that different interactions may belong to different modules. |
format | Text |
id | pubmed-2823677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28236772010-02-18 Searching for functional gene modules with interaction component models Parkkinen, Juuso A Kaski, Samuel BMC Syst Biol Research article BACKGROUND: Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions. RESULTS: We formulate a generative probabilistic model for protein-protein interaction links and introduce two ways for including gene expression data into the model. The model finds interaction components, which can be interpreted as overlapping clusters or functional modules. We demonstrate the performance on two data sets of yeast Saccharomyces cerevisiae. Our methods outperform a representative set of earlier models in the task of finding biologically relevant modules having enriched functional classes. CONCLUSIONS: Combining protein interaction and gene expression data with a probabilistic generative model improves discovery of modules compared to approaches based on either data source alone. With a fairly simple model we can find biologically relevant modules better than with alternative methods, and in addition the modules may be inherently overlapping in the sense that different interactions may belong to different modules. BioMed Central 2010-01-25 /pmc/articles/PMC2823677/ /pubmed/20100324 http://dx.doi.org/10.1186/1752-0509-4-4 Text en Copyright ©2010 Parkkinen and Kaski; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Parkkinen, Juuso A Kaski, Samuel Searching for functional gene modules with interaction component models |
title | Searching for functional gene modules with interaction component models |
title_full | Searching for functional gene modules with interaction component models |
title_fullStr | Searching for functional gene modules with interaction component models |
title_full_unstemmed | Searching for functional gene modules with interaction component models |
title_short | Searching for functional gene modules with interaction component models |
title_sort | searching for functional gene modules with interaction component models |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823677/ https://www.ncbi.nlm.nih.gov/pubmed/20100324 http://dx.doi.org/10.1186/1752-0509-4-4 |
work_keys_str_mv | AT parkkinenjuusoa searchingforfunctionalgenemoduleswithinteractioncomponentmodels AT kaskisamuel searchingforfunctionalgenemoduleswithinteractioncomponentmodels |