Cargando…

SAMPLEX: Automatic mapping of perturbed and unperturbed regions of proteins and complexes

BACKGROUND: The activity of proteins within the cell is characterized by their motions, flexibility, interactions or even the particularly intriguing case of partially unfolded states. In the last two cases, a part of the protein is affected either by binding or unfolding and the detection of the re...

Descripción completa

Detalles Bibliográficos
Autores principales: Krzeminski, Mickaël, Loth, Karine, Boelens, Rolf, Bonvin, Alexandre MJJ
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823710/
https://www.ncbi.nlm.nih.gov/pubmed/20102599
http://dx.doi.org/10.1186/1471-2105-11-51
Descripción
Sumario:BACKGROUND: The activity of proteins within the cell is characterized by their motions, flexibility, interactions or even the particularly intriguing case of partially unfolded states. In the last two cases, a part of the protein is affected either by binding or unfolding and the detection of the respective perturbed and unperturbed region(s) is a fundamental part of the structural characterization of these states. This can be achieved by comparing experimental data of the same protein in two different states (bound/unbound, folded/unfolded). For instance, measurements of chemical shift perturbations (CSPs) from NMR (1)H-(15)N HSQC experiments gives an excellent opportunity to discriminate both moieties. RESULTS: We describe an innovative, automatic and unbiased method to distinguish perturbed and unperturbed regions in a protein existing in two distinct states (folded/partially unfolded, bound/unbound). The SAMPLEX program takes as input a set of data and the corresponding three-dimensional structure and returns the confidence for each residue to be in a perturbed or unperturbed state. Its performance is demonstrated for different applications including the prediction of disordered regions in partially unfolded proteins and of interacting regions in protein complexes. CONCLUSIONS: The proposed approach is suitable for partially unfolded states of proteins, local perturbations due to small ligands and protein-protein interfaces. The method is not restricted to NMR data, but is generic and can be applied to a wide variety of information.