Cargando…
Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition
BACKGROUND: Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide sign...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823756/ https://www.ncbi.nlm.nih.gov/pubmed/20105322 http://dx.doi.org/10.1186/1471-2202-11-10 |
_version_ | 1782177680233332736 |
---|---|
author | Aboukhatwa, Marwa A Undieh, Ashiwel S |
author_facet | Aboukhatwa, Marwa A Undieh, Ashiwel S |
author_sort | Aboukhatwa, Marwa A |
collection | PubMed |
description | BACKGROUND: Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol. RESULTS: Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with p-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues. CONCLUSION: Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence, the present findings should strengthen the notion that modulation of brain phosphatidylinositide signaling probably contributes to the molecular mechanism of diverse antidepressant medications. |
format | Text |
id | pubmed-2823756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28237562010-02-18 Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition Aboukhatwa, Marwa A Undieh, Ashiwel S BMC Neurosci Research article BACKGROUND: Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol. RESULTS: Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with p-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues. CONCLUSION: Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence, the present findings should strengthen the notion that modulation of brain phosphatidylinositide signaling probably contributes to the molecular mechanism of diverse antidepressant medications. BioMed Central 2010-01-27 /pmc/articles/PMC2823756/ /pubmed/20105322 http://dx.doi.org/10.1186/1471-2202-11-10 Text en Copyright ©2010 Aboukhatwa and Undieh; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Aboukhatwa, Marwa A Undieh, Ashiwel S Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title | Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title_full | Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title_fullStr | Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title_full_unstemmed | Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title_short | Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition |
title_sort | antidepressant stimulation of cdp-diacylglycerol synthesis does not require monoamine reuptake inhibition |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823756/ https://www.ncbi.nlm.nih.gov/pubmed/20105322 http://dx.doi.org/10.1186/1471-2202-11-10 |
work_keys_str_mv | AT aboukhatwamarwaa antidepressantstimulationofcdpdiacylglycerolsynthesisdoesnotrequiremonoaminereuptakeinhibition AT undiehashiwels antidepressantstimulationofcdpdiacylglycerolsynthesisdoesnotrequiremonoaminereuptakeinhibition |