Cargando…
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
BACKGROUND: There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model. METHODS: Datasets w...
Autores principales: | Marshall, Andrea, Altman, Douglas G, Royston, Patrick, Holder, Roger L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824146/ https://www.ncbi.nlm.nih.gov/pubmed/20085642 http://dx.doi.org/10.1186/1471-2288-10-7 |
Ejemplares similares
-
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Simulation study - handling missing covariates in the context of external validation
por: Bonnett, Laura J, et al.
Publicado: (2011) -
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines
por: Marshall, Andrea, et al.
Publicado: (2009) -
Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines
por: Burton, A, et al.
Publicado: (2004)