Cargando…

Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni

BACKGROUND: Surveys of ontogenetic development of hearing and sound production in fish are scarce, and the ontogenetic development of acoustic communication has been investigated in only two fish species so far. Studies on the labyrinth fish Trichopsis vittata and the toadfish Halobatrachus didactyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lechner, Walter, Wysocki, Lidia Eva, Ladich, Friedrich
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824629/
https://www.ncbi.nlm.nih.gov/pubmed/20113466
http://dx.doi.org/10.1186/1741-7007-8-10
_version_ 1782177707035983872
author Lechner, Walter
Wysocki, Lidia Eva
Ladich, Friedrich
author_facet Lechner, Walter
Wysocki, Lidia Eva
Ladich, Friedrich
author_sort Lechner, Walter
collection PubMed
description BACKGROUND: Surveys of ontogenetic development of hearing and sound production in fish are scarce, and the ontogenetic development of acoustic communication has been investigated in only two fish species so far. Studies on the labyrinth fish Trichopsis vittata and the toadfish Halobatrachus didactylus show that the ability to detect conspecific sounds develops during growth. In otophysine fish, which are characterized by Weberian ossicles and improved hearing sensitivities, the ontogenetic development of sound communication has never been investigated. We analysed the ontogeny of the auditory sensitivity and vocalizations in the mochokid catfish Synodontis schoutedeni. Mochokid catfishes of the genus Synodontis are commonly called squeakers because they produce broadband stridulation sounds during abduction and adduction of pectoral fin spines. Fish from six different size groups - from 22 mm standard length to 126 mm - were studied. Hearing thresholds were measured between 50 Hz and 6 kHz using the auditory evoked potentials recording technique; stridulation sounds were recorded and their sound pressure levels determined. Finally, absolute sound power spectra were compared to auditory sensitivity curves within each size group. RESULTS: The smallest juveniles showed the poorest hearing abilities of all size groups between 50 and 1,000 Hz and highest hearing sensitivity at 5 and 6 kHz. The duration of abduction and adduction sounds and the pulse period increased and sound pressure level (in animals smaller than 58 mm) increased, while the dominant frequency of sounds decreased with size in animals larger than 37 mm. Comparisons between audiograms and sound spectra revealed that the most sensitive frequencies correlate with the dominant frequencies of stridulation sounds in all S. schoutedeni size groups and that all specimens are able to detect sounds of all size groups. CONCLUSIONS: This study on the squeaker catfish S. schoutedeni is the first to demonstrate that absolute hearing sensitivity changes during ontogeny in an otophysine fish. This contrasts with prior studies on two cypriniform fish species in which no such change could be observed. Furthermore, S. schoutedeni can detect conspecific sounds at all stages of development, again contrasting with prior findings in fishes.
format Text
id pubmed-2824629
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28246292010-02-19 Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni Lechner, Walter Wysocki, Lidia Eva Ladich, Friedrich BMC Biol Research article BACKGROUND: Surveys of ontogenetic development of hearing and sound production in fish are scarce, and the ontogenetic development of acoustic communication has been investigated in only two fish species so far. Studies on the labyrinth fish Trichopsis vittata and the toadfish Halobatrachus didactylus show that the ability to detect conspecific sounds develops during growth. In otophysine fish, which are characterized by Weberian ossicles and improved hearing sensitivities, the ontogenetic development of sound communication has never been investigated. We analysed the ontogeny of the auditory sensitivity and vocalizations in the mochokid catfish Synodontis schoutedeni. Mochokid catfishes of the genus Synodontis are commonly called squeakers because they produce broadband stridulation sounds during abduction and adduction of pectoral fin spines. Fish from six different size groups - from 22 mm standard length to 126 mm - were studied. Hearing thresholds were measured between 50 Hz and 6 kHz using the auditory evoked potentials recording technique; stridulation sounds were recorded and their sound pressure levels determined. Finally, absolute sound power spectra were compared to auditory sensitivity curves within each size group. RESULTS: The smallest juveniles showed the poorest hearing abilities of all size groups between 50 and 1,000 Hz and highest hearing sensitivity at 5 and 6 kHz. The duration of abduction and adduction sounds and the pulse period increased and sound pressure level (in animals smaller than 58 mm) increased, while the dominant frequency of sounds decreased with size in animals larger than 37 mm. Comparisons between audiograms and sound spectra revealed that the most sensitive frequencies correlate with the dominant frequencies of stridulation sounds in all S. schoutedeni size groups and that all specimens are able to detect sounds of all size groups. CONCLUSIONS: This study on the squeaker catfish S. schoutedeni is the first to demonstrate that absolute hearing sensitivity changes during ontogeny in an otophysine fish. This contrasts with prior studies on two cypriniform fish species in which no such change could be observed. Furthermore, S. schoutedeni can detect conspecific sounds at all stages of development, again contrasting with prior findings in fishes. BioMed Central 2010-01-29 /pmc/articles/PMC2824629/ /pubmed/20113466 http://dx.doi.org/10.1186/1741-7007-8-10 Text en Copyright ©2010 Lechner et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Lechner, Walter
Wysocki, Lidia Eva
Ladich, Friedrich
Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title_full Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title_fullStr Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title_full_unstemmed Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title_short Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni
title_sort ontogenetic development of auditory sensitivity and sound production in the squeaker catfish synodontis schoutedeni
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824629/
https://www.ncbi.nlm.nih.gov/pubmed/20113466
http://dx.doi.org/10.1186/1741-7007-8-10
work_keys_str_mv AT lechnerwalter ontogeneticdevelopmentofauditorysensitivityandsoundproductioninthesqueakercatfishsynodontisschoutedeni
AT wysockilidiaeva ontogeneticdevelopmentofauditorysensitivityandsoundproductioninthesqueakercatfishsynodontisschoutedeni
AT ladichfriedrich ontogeneticdevelopmentofauditorysensitivityandsoundproductioninthesqueakercatfishsynodontisschoutedeni