Cargando…
Predicting gene function using hierarchical multi-label decision tree ensembles
BACKGROUND: S. cerevisiae, A. thaliana and M. musculus are well-studied organisms in biology and the sequencing of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign biological functions to the ORFs in these genomes automatically. Different m...
Autores principales: | Schietgat, Leander, Vens, Celine, Struyf, Jan, Blockeel, Hendrik, Kocev, Dragi, Džeroski, Sašo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824675/ https://www.ncbi.nlm.nih.gov/pubmed/20044933 http://dx.doi.org/10.1186/1471-2105-11-2 |
Ejemplares similares
-
Discovery science: 17th international conference, DS 2014, Bled, Slovenia, October 8-10, 2014, proceedings
por: Kocev, Dragi, et al.
Publicado: (2014) -
Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
por: Stojanova, Daniela, et al.
Publicado: (2013) -
Error curves for evaluating the quality of feature rankings
por: Slavkov, Ivica, et al.
Publicado: (2020) -
A catalogue with semantic annotations makes multilabel datasets FAIR
por: Kostovska, Ana, et al.
Publicado: (2022) -
A machine learning based framework to identify and classify long terminal repeat retrotransposons
por: Schietgat, Leander, et al.
Publicado: (2018)