Cargando…
Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins
BACKGROUND: Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824812/ https://www.ncbi.nlm.nih.gov/pubmed/20174569 http://dx.doi.org/10.1371/journal.pone.0009283 |
_version_ | 1782177741937836032 |
---|---|
author | Ferencko, Linda Rotman, Boris |
author_facet | Ferencko, Linda Rotman, Boris |
author_sort | Ferencko, Linda |
collection | PubMed |
description | BACKGROUND: Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat's architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy. PRINCIPAL FINDINGS: Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism. CONCLUSIONS: This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gain new insights into structure/function dynamics of spore-coat proteins. |
format | Text |
id | pubmed-2824812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28248122010-02-19 Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins Ferencko, Linda Rotman, Boris PLoS One Research Article BACKGROUND: Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat's architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy. PRINCIPAL FINDINGS: Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism. CONCLUSIONS: This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gain new insights into structure/function dynamics of spore-coat proteins. Public Library of Science 2010-02-19 /pmc/articles/PMC2824812/ /pubmed/20174569 http://dx.doi.org/10.1371/journal.pone.0009283 Text en Ferencko, Rotman. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ferencko, Linda Rotman, Boris Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title | Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title_full | Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title_fullStr | Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title_full_unstemmed | Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title_short | Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins |
title_sort | constructing fluorogenic bacillus spores (f-spores) via hydrophobic decoration of coat proteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824812/ https://www.ncbi.nlm.nih.gov/pubmed/20174569 http://dx.doi.org/10.1371/journal.pone.0009283 |
work_keys_str_mv | AT ferenckolinda constructingfluorogenicbacillussporesfsporesviahydrophobicdecorationofcoatproteins AT rotmanboris constructingfluorogenicbacillussporesfsporesviahydrophobicdecorationofcoatproteins |