Cargando…

Human Multipotent Stromal Cells (MSCs) Increase Neurogenesis and Decrease Atrophy of the Striatum in a Transgenic Mouse Model for Huntington's Disease

BACKGROUND: Implantation of human multipotent stromal cells from bone marrow (hMSCs) into the dentate gyrus of the hippocampus of mice was previously shown to stimulate proliferation, migration and neural differentiation of endogenous neural stem cells. We hypothesized that hMSCs would be beneficial...

Descripción completa

Detalles Bibliográficos
Autores principales: Snyder, Brooke R., Chiu, Andrew M., Prockop, Darwin J., Chan, Anthony W. S.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825266/
https://www.ncbi.nlm.nih.gov/pubmed/20179764
http://dx.doi.org/10.1371/journal.pone.0009347
Descripción
Sumario:BACKGROUND: Implantation of human multipotent stromal cells from bone marrow (hMSCs) into the dentate gyrus of the hippocampus of mice was previously shown to stimulate proliferation, migration and neural differentiation of endogenous neural stem cells. We hypothesized that hMSCs would be beneficial in a mouse model of Huntington disease (HD) due to these neurogenic effects. RESULTS: We implanted hMSCs into the striatum of transgenic mice (N171-82Q) that are a model for HD. The implanted hMSCs rapidly disappeared over 3 to 15 days. However, they increased proliferation and neural differentiation of endogenous neural stem cells for up to 30 days. They also increased neurotrophic signaling and decreased atrophy of the striatum in 3-month old HD mice implanted with hMSCs one month earlier. CONCLUSIONS: The results therefore suggested that neural implantation of hMSCs may be of benefit in HD but a number of parameters of dose, treatment schedule, and route of administration need to be optimized.