Cargando…
Ten simple rules for dynamic causal modeling
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and...
Autores principales: | Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E.M., Daunizeau, J., Friston, K.J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825373/ https://www.ncbi.nlm.nih.gov/pubmed/19914382 http://dx.doi.org/10.1016/j.neuroimage.2009.11.015 |
Ejemplares similares
-
Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
por: Daunizeau, J., et al.
Publicado: (2012) -
Dynamic causal models of steady-state responses
por: Moran, R.J., et al.
Publicado: (2009) -
Dynamic causal modeling with neural fields
por: Pinotsis, D.A., et al.
Publicado: (2012) -
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
por: Daunizeau, J., et al.
Publicado: (2009) -
Dynamic causal modelling for functional near-infrared spectroscopy
por: Tak, S., et al.
Publicado: (2015)