Cargando…
Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway
BACKGROUND: The Wnt signaling pathway plays key roles in development, adult tissue homeostasis and stem cell maintenance. Further understanding of the function of Wnt signaling in specific cell types could benefit from lentiviral vectors expressing reporters for the Wnt pathway or vectors interferin...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826402/ https://www.ncbi.nlm.nih.gov/pubmed/20186325 http://dx.doi.org/10.1371/journal.pone.0009370 |
Sumario: | BACKGROUND: The Wnt signaling pathway plays key roles in development, adult tissue homeostasis and stem cell maintenance. Further understanding of the function of Wnt signaling in specific cell types could benefit from lentiviral vectors expressing reporters for the Wnt pathway or vectors interfering with signaling. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a set of fluorescent and luminescent lentiviral vectors that report Wnt signaling activity and discriminate between negative and uninfected cells. These vectors possess a 7xTcf-eGFP or 7xTcf-FFluc (Firefly Luciferase) reporter cassette followed by either an SV40-mCherry or SV40-Puro(R) (puromycin N-acetyltransferase) selection cassette. We have also constructed a vector that allows drug-based selection of cells with activated Wnt signaling by placing Puro(R) under the control of the 7xTcf promoter. Lastly, we have expressed dominant-negative Tcf4 (dnTcf4) or constitutively active beta-catenin (β-catenin(4A)) from the hEF1α promoter in a SV40-Puro(R) or SV40-mCherry backbone to create vectors that inhibit or activate the Wnt signaling pathway. These vectors will be made available to the scientific community through Addgene. CONCLUSIONS: These novel lentiviruses are efficient tools to probe and manipulate Wnt signaling. The use of a selection cassette in Wnt-reporter viruses enables discriminating between uninfected and non-responsive cells, an important requirement for experiments where selection of clones is not possible. The use of a chemiluminescent readout enables quantification of signaling. Finally, selectable vectors can be used to either inhibit or activate the Wnt signaling pathway. Altogether, these vectors can probe and modulate the Wnt signaling pathway in experimental settings where persistence of the transgene or gene transfer cannot be accomplished by non-viral techniques. |
---|