Cargando…
Intracellular consequences of SOS1 deficiency during salt stress
A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na(+)/H(+)-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt st...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826659/ https://www.ncbi.nlm.nih.gov/pubmed/20054031 http://dx.doi.org/10.1093/jxb/erp391 |
Sumario: | A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na(+)/H(+)-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1 mutant, atsos1-1, by confocal microscopy using ion-specific fluorophores and by quantitative RT-PCR. In addition to the higher accumulation of sodium ions, atsos1-1 showed inhibition of endocytosis, abnormalities in vacuolar shape and function, and changes in intracellular pH compared to the wild type in root tip cells under stress. Quantitative RT-PCR revealed a dramatically faster and higher induction of root-specific Ca(2+) transporters, including several CAXs and CNGCs, and the drastic down-regulation of genes involved in pH-homeostasis and membrane potential maintenance. Differential regulation of genes for functions in intracellular protein trafficking in atsos1-1 was also observed. The results suggested roles of the SOS1 protein, in addition to its function as a Na(+)/H(+) antiporter, whose disruption affected membrane traffic and vacuolar functions possibly by controlling pH homeostasis in root cells. |
---|