Cargando…
Comparative analysis of missing value imputation methods to improve clustering and interpretation of microarray experiments
BACKGROUND: Microarray technologies produced large amount of data. In a previous study, we have shown the interest of k-Nearest Neighbour approach for restoring the missing gene expression values, and its positive impact of the gene clustering by hierarchical algorithm. Since, numerous replacement m...
Autores principales: | Celton, Magalie, Malpertuy, Alain, Lelandais, Gaëlle, de Brevern, Alexandre G |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827407/ https://www.ncbi.nlm.nih.gov/pubmed/20056002 http://dx.doi.org/10.1186/1471-2164-11-15 |
Ejemplares similares
-
Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering
por: de Brevern, Alexandre G, et al.
Publicado: (2004) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008) -
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015)