Cargando…
Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity
BACKGROUND: Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. RESULTS: T...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827408/ https://www.ncbi.nlm.nih.gov/pubmed/20047678 http://dx.doi.org/10.1186/1471-2164-11-2 |
_version_ | 1782177936805199872 |
---|---|
author | Smits, Theo HM Jaenicke, Sebastian Rezzonico, Fabio Kamber, Tim Goesmann, Alexander Frey, Jürg E Duffy, Brion |
author_facet | Smits, Theo HM Jaenicke, Sebastian Rezzonico, Fabio Kamber, Tim Goesmann, Alexander Frey, Jürg E Duffy, Brion |
author_sort | Smits, Theo HM |
collection | PubMed |
description | BACKGROUND: Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. RESULTS: The genome of the type strain of E. pyrifoliae strain DSM 12163(T), was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163(T )genome. CONCLUSIONS: The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria. |
format | Text |
id | pubmed-2827408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28274082010-02-24 Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity Smits, Theo HM Jaenicke, Sebastian Rezzonico, Fabio Kamber, Tim Goesmann, Alexander Frey, Jürg E Duffy, Brion BMC Genomics Research Article BACKGROUND: Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. RESULTS: The genome of the type strain of E. pyrifoliae strain DSM 12163(T), was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163(T )genome. CONCLUSIONS: The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria. BioMed Central 2010-01-04 /pmc/articles/PMC2827408/ /pubmed/20047678 http://dx.doi.org/10.1186/1471-2164-11-2 Text en Copyright ©2010 Smits et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Smits, Theo HM Jaenicke, Sebastian Rezzonico, Fabio Kamber, Tim Goesmann, Alexander Frey, Jürg E Duffy, Brion Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title | Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title_full | Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title_fullStr | Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title_full_unstemmed | Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title_short | Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T )and comparative genomic insights into plant pathogenicity |
title_sort | complete genome sequence of the fire blight pathogen erwinia pyrifoliae dsm 12163(t )and comparative genomic insights into plant pathogenicity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827408/ https://www.ncbi.nlm.nih.gov/pubmed/20047678 http://dx.doi.org/10.1186/1471-2164-11-2 |
work_keys_str_mv | AT smitstheohm completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT jaenickesebastian completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT rezzonicofabio completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT kambertim completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT goesmannalexander completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT freyjurge completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity AT duffybrion completegenomesequenceofthefireblightpathogenerwiniapyrifoliaedsm12163tandcomparativegenomicinsightsintoplantpathogenicity |