Cargando…
Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)
BACKGROUND: Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes i...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827421/ https://www.ncbi.nlm.nih.gov/pubmed/20078869 http://dx.doi.org/10.1186/1471-2229-10-12 |
_version_ | 1782177939962462208 |
---|---|
author | Chen, Yongsheng Zein, Imad Brenner, Everton Alen Andersen, Jeppe Reitan Landbeck, Mathias Ouzunova, Milena Lübberstedt, Thomas |
author_facet | Chen, Yongsheng Zein, Imad Brenner, Everton Alen Andersen, Jeppe Reitan Landbeck, Mathias Ouzunova, Milena Lübberstedt, Thomas |
author_sort | Chen, Yongsheng |
collection | PubMed |
description | BACKGROUND: Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. RESULTS: In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. CONCLUSION: Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. |
format | Text |
id | pubmed-2827421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28274212010-02-24 Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) Chen, Yongsheng Zein, Imad Brenner, Everton Alen Andersen, Jeppe Reitan Landbeck, Mathias Ouzunova, Milena Lübberstedt, Thomas BMC Plant Biol Research article BACKGROUND: Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. RESULTS: In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. CONCLUSION: Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. BioMed Central 2010-01-15 /pmc/articles/PMC2827421/ /pubmed/20078869 http://dx.doi.org/10.1186/1471-2229-10-12 Text en Copyright ©2010 Chen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Chen, Yongsheng Zein, Imad Brenner, Everton Alen Andersen, Jeppe Reitan Landbeck, Mathias Ouzunova, Milena Lübberstedt, Thomas Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title | Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title_full | Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title_fullStr | Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title_full_unstemmed | Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title_short | Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.) |
title_sort | polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in european maize (zea mays l.) |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827421/ https://www.ncbi.nlm.nih.gov/pubmed/20078869 http://dx.doi.org/10.1186/1471-2229-10-12 |
work_keys_str_mv | AT chenyongsheng polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT zeinimad polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT brennerevertonalen polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT andersenjeppereitan polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT landbeckmathias polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT ouzunovamilena polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl AT lubberstedtthomas polymorphismsinmonolignolbiosyntheticgenesareassociatedwithbiomassyieldandagronomictraitsineuropeanmaizezeamaysl |