Cargando…
Bayesian Markov Random Field Analysis for Protein Function Prediction Based on Network Data
Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use se...
Autores principales: | Kourmpetis, Yiannis A. I., van Dijk, Aalt D. J., Bink, Marco C. A. M., van Ham, Roeland C. H. J., ter Braak, Cajo J. F. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827541/ https://www.ncbi.nlm.nih.gov/pubmed/20195360 http://dx.doi.org/10.1371/journal.pone.0009293 |
Ejemplares similares
-
Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes
por: Kourmpetis, Yiannis AI, et al.
Publicado: (2013) -
Correlated mutations via regularized multinomial regression
por: Sreekumar, Janardanan, et al.
Publicado: (2011) -
Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge
por: Menéndez, Patricia, et al.
Publicado: (2010) -
Conserved and variable correlated mutations in the plant MADS protein network
por: van Dijk, Aalt DJ, et al.
Publicado: (2010) -
Mutational Robustness of Gene Regulatory Networks
por: van Dijk, Aalt D. J., et al.
Publicado: (2012)