Cargando…
Improving protein secondary structure prediction using a simple k-mer model
Motivation: Some first order methods for protein sequence analysis inherently treat each position as independent. We develop a general framework for introducing longer range interactions. We then demonstrate the power of our approach by applying it to secondary structure prediction; under the indepe...
Autores principales: | Madera, Martin, Calmus, Ryan, Thiltgen, Grant, Karplus, Kevin, Gough, Julian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828123/ https://www.ncbi.nlm.nih.gov/pubmed/20130034 http://dx.doi.org/10.1093/bioinformatics/btq020 |
Ejemplares similares
-
SAM-T08, HMM-based protein structure prediction
por: Karplus, Kevin
Publicado: (2009) -
These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data Structure
por: Zhang, Qingpeng, et al.
Publicado: (2014) -
A novel k-mer set memory (KSM) motif representation improves regulatory variant prediction
por: Guo, Yuchun, et al.
Publicado: (2018) -
Assessing Predictors of Changes in Protein Stability upon Mutation Using Self-Consistency
por: Thiltgen, Grant, et al.
Publicado: (2012) -
Improved assembly of noisy long reads by k-mer validation
por: Carvalho, Antonio Bernardo, et al.
Publicado: (2016)