Cargando…
Using genetic algorithms to optimise current and future health planning - the example of ambulance locations
BACKGROUND: Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for...
Autores principales: | Sasaki, Satoshi, Comber, Alexis J, Suzuki, Hiroshi, Brunsdon, Chris |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828441/ https://www.ncbi.nlm.nih.gov/pubmed/20109172 http://dx.doi.org/10.1186/1476-072X-9-4 |
Ejemplares similares
-
A spatial analysis of variations in health access: linking geography, socio-economic status and access perceptions
por: Comber, Alexis J, et al.
Publicado: (2011) -
Introducing fairness in Norwegian air ambulance base location planning
por: Jagtenberg, Caroline J., et al.
Publicado: (2021) -
Using a genetic algorithm to solve a non-linear location allocation problem for specialised children’s ambulances in England and Wales
por: Kung, Enoch, et al.
Publicado: (2021) -
Coverage versus response time objectives in ambulance location
por: Jánošíková, Ľudmila, et al.
Publicado: (2021) -
A Systematic Review of LET-Guided Treatment Plan Optimisation in Proton Therapy: Identifying the Current State and Future Needs
por: McIntyre, Melissa, et al.
Publicado: (2023)