Cargando…
A Statistically Rigorous Test for the Identification of Parent−Fragment Pairs in LC-MS Datasets
Untargeted global metabolic profiling by liquid chromato-graphy−mass spectrometry generates numerous signals that are due to unknown compounds and whose identification forms an important challenge. The analysis of metabolite fragmentation patterns, following collision-induced dissociation, provides...
Autores principales: | Ipsen, Andreas, Want, Elizabeth J., Lindon, John C., Ebbels, Timothy M. D. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2010
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829950/ https://www.ncbi.nlm.nih.gov/pubmed/20143830 http://dx.doi.org/10.1021/ac902361f |
Ejemplares similares
-
Construction of Confidence Regions for Isotopic Abundance Patterns in LC/MS Data Sets for Rigorous Determination of Molecular Formulas
por: Ipsen, Andreas, et al.
Publicado: (2010) -
Prospects for a Statistical Theory of LC/TOFMS Data
por: Ipsen, Andreas, et al.
Publicado: (2012) -
Automated Annotation of Untargeted All-Ion Fragmentation
LC–MS Metabolomics Data with MetaboAnnotatoR
por: Graça, Gonçalo, et al.
Publicado: (2022) -
Proteome dataset of Hemileia vastatrix by LC–MS/MS label-free identification
por: Cury, Natália Faustino, et al.
Publicado: (2022) -
Rigorous Statistical Methods for Rigorous Microbiome Science
por: Willis, Amy D.
Publicado: (2019)