Cargando…
Targeting lentiviral vector to specific cell types through surface displayed single chain antibody and fusogenic molecule
BACKGROUND: Viral delivery remains one of the most commonly used techniques today in the field of gene therapy. However, one of the remaining hurdles is the off-targeting effect of viral delivery. To overcome this obstacle, we recently developed a method to incorporate an antibody and a fusogenic mo...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830192/ https://www.ncbi.nlm.nih.gov/pubmed/20149250 http://dx.doi.org/10.1186/1743-422X-7-35 |
Sumario: | BACKGROUND: Viral delivery remains one of the most commonly used techniques today in the field of gene therapy. However, one of the remaining hurdles is the off-targeting effect of viral delivery. To overcome this obstacle, we recently developed a method to incorporate an antibody and a fusogenic molecule (FM) as two distinct molecules into the lentiviral surface. In this report, we expand this strategy to utilize a single chain antibody (SCAb) for targeted transduction. RESULTS: Two versions of the SCAb were generated to pair with our various engineered FMs by linking the heavy chain and the light chain variable domains of the anti-CD20 antibody (αCD20) via a GS linker and fusing them to the hinge-CH2-CH3 region of human IgG. The resulting protein was fused to either a HLA-A2 transmembrane domain or a VSVG transmembrane domain for anchoring purpose. Lentiviral vectors generated with either version of the SCAb and a selected FM were then characterized for binding and fusion activities in CD20-expressing cells. CONCLUSION: Certain combinations of the SCAb with various FMs could result in an increase in viral transduction. This two-molecule lentiviral vector system design allows for parallel optimization of the SCAb and FMs to improve targeted gene delivery. |
---|