Cargando…

Dr1 (NC2) is present at tRNA genes and represses their transcription in human cells

Dr1 (also known as NC2β) was identified as a repressor of RNA polymerase (pol) II transcription. It was subsequently shown to inhibit pol III transcription when expressed at high levels in vitro or in yeast cells. However, endogenous Dr1 was not detected at pol III-transcribed genes in growing yeast...

Descripción completa

Detalles Bibliográficos
Autores principales: Kantidakis, Theodoros, White, Robert J.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831321/
https://www.ncbi.nlm.nih.gov/pubmed/19965767
http://dx.doi.org/10.1093/nar/gkp1102
Descripción
Sumario:Dr1 (also known as NC2β) was identified as a repressor of RNA polymerase (pol) II transcription. It was subsequently shown to inhibit pol III transcription when expressed at high levels in vitro or in yeast cells. However, endogenous Dr1 was not detected at pol III-transcribed genes in growing yeast. In contrast, we demonstrate that endogenous Dr1 is present at pol III templates in human cells, as is its dimerization partner DRAP1 (also called NC2α). Expression of tRNA by pol III is selectively enhanced by RNAi-mediated depletion of endogenous human Dr1, but we found no evidence that DRAP1 influences pol III output in vivo. A stable association was detected between endogenous Dr1 and the pol III-specific transcription factor Brf1. This interaction may recruit Dr1 to pol III templates in vivo, as crosslinking to these sites increases following Brf1 induction. On the basis of these data, we conclude that the physiological functions of human Dr1 include regulation of pol III transcription.