Cargando…

Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether

BACKGROUND: Polybrominated diphenyl ethers are a group of flame-retardant chemicals appearing increasingly in the environment. Their health effects and mechanisms of toxicity are poorly understood. OBJECTIVES: We screened for the sensitive effects and mechanisms of toxicity of 2,2′,4,4′-tetrabromodi...

Descripción completa

Detalles Bibliográficos
Autores principales: Suvorov, Alexander, Takser, Larissa
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831975/
https://www.ncbi.nlm.nih.gov/pubmed/20056577
http://dx.doi.org/10.1289/ehp.0901031
_version_ 1782178304095158272
author Suvorov, Alexander
Takser, Larissa
author_facet Suvorov, Alexander
Takser, Larissa
author_sort Suvorov, Alexander
collection PubMed
description BACKGROUND: Polybrominated diphenyl ethers are a group of flame-retardant chemicals appearing increasingly in the environment. Their health effects and mechanisms of toxicity are poorly understood. OBJECTIVES: We screened for the sensitive effects and mechanisms of toxicity of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by analyzing the gene expression profile in rats exposed to doses comparable to human exposure. METHODS: Wistar dams were exposed to vehicle or BDE-47 (0.002 and 0.2 mg/kg body weight) every fifth day from gestation day 15 to postnatal day 20 by injections to caudal vein. Total RNA was extracted from the livers of pups and hybridized to the whole-genome RNA expression microarrays. The list of genes 2-fold differentially expressed was exported to PANTHER and Ingenuity Systems for analysis of enriched ontology groups and molecular pathways. RESULTS: Oxidoreductase and transferase protein families were enriched in exposed rats as were these biological process categories: carbohydrate metabolism; electron transport; and lipid, fatty acid, and steroid metabolism. Four signaling pathways (cascades of activation of drug-metabolizing enzymes) and 10 metabolic pathways were significantly enriched. Drug-metabolizing enzymes appear to be regulated by BDE-47 through an aryl hydrocarbon receptor–independent mechanism. Direct interaction with retinoid X receptor or its upstream cascade may be involved. The main metabolic effects consisted of activation of metabolic pathways: α- and ω-oxidation of fatty acids, glycolysis, and starch hydrolysis. CONCLUSIONS: Altered expression of genes involved in metabolic and signaling pathways and functions of the organism occurs after perinatal exposure of rat offspring to BDE-47 at doses relevant for the general population.
format Text
id pubmed-2831975
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher National Institute of Environmental Health Sciences
record_format MEDLINE/PubMed
spelling pubmed-28319752010-03-16 Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether Suvorov, Alexander Takser, Larissa Environ Health Perspect Research BACKGROUND: Polybrominated diphenyl ethers are a group of flame-retardant chemicals appearing increasingly in the environment. Their health effects and mechanisms of toxicity are poorly understood. OBJECTIVES: We screened for the sensitive effects and mechanisms of toxicity of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by analyzing the gene expression profile in rats exposed to doses comparable to human exposure. METHODS: Wistar dams were exposed to vehicle or BDE-47 (0.002 and 0.2 mg/kg body weight) every fifth day from gestation day 15 to postnatal day 20 by injections to caudal vein. Total RNA was extracted from the livers of pups and hybridized to the whole-genome RNA expression microarrays. The list of genes 2-fold differentially expressed was exported to PANTHER and Ingenuity Systems for analysis of enriched ontology groups and molecular pathways. RESULTS: Oxidoreductase and transferase protein families were enriched in exposed rats as were these biological process categories: carbohydrate metabolism; electron transport; and lipid, fatty acid, and steroid metabolism. Four signaling pathways (cascades of activation of drug-metabolizing enzymes) and 10 metabolic pathways were significantly enriched. Drug-metabolizing enzymes appear to be regulated by BDE-47 through an aryl hydrocarbon receptor–independent mechanism. Direct interaction with retinoid X receptor or its upstream cascade may be involved. The main metabolic effects consisted of activation of metabolic pathways: α- and ω-oxidation of fatty acids, glycolysis, and starch hydrolysis. CONCLUSIONS: Altered expression of genes involved in metabolic and signaling pathways and functions of the organism occurs after perinatal exposure of rat offspring to BDE-47 at doses relevant for the general population. National Institute of Environmental Health Sciences 2010-01 2009-08-17 /pmc/articles/PMC2831975/ /pubmed/20056577 http://dx.doi.org/10.1289/ehp.0901031 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Research
Suvorov, Alexander
Takser, Larissa
Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title_full Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title_fullStr Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title_full_unstemmed Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title_short Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether
title_sort global gene expression analysis in the livers of rat offspring perinatally exposed to low doses of 2,2′,4,4′-tetrabromodiphenyl ether
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831975/
https://www.ncbi.nlm.nih.gov/pubmed/20056577
http://dx.doi.org/10.1289/ehp.0901031
work_keys_str_mv AT suvorovalexander globalgeneexpressionanalysisintheliversofratoffspringperinatallyexposedtolowdosesof2244tetrabromodiphenylether
AT takserlarissa globalgeneexpressionanalysisintheliversofratoffspringperinatallyexposedtolowdosesof2244tetrabromodiphenylether