Cargando…

The Viscoelastic Properties of Passive Eye Muscle in Primates. III: Force Elicited by Natural Elongations

We have recently shown that in monkey passive extraocular muscles the force induced by a stretch does not depend on the entire length history, but to a great extent is only a function of the last elongation applied. This led us to conclude that Fung's quasi-linear viscoelastic (QLV) model, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Quaia, Christian, Ying, Howard S., Optican, Lance M.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833209/
https://www.ncbi.nlm.nih.gov/pubmed/20221406
http://dx.doi.org/10.1371/journal.pone.0009595
Descripción
Sumario:We have recently shown that in monkey passive extraocular muscles the force induced by a stretch does not depend on the entire length history, but to a great extent is only a function of the last elongation applied. This led us to conclude that Fung's quasi-linear viscoelastic (QLV) model, and more general nonlinear models based on a single convolution integral, cannot faithfully mimic passive eye muscles. Here we present additional data about the mechanical properties of passive eye muscles in deeply anesthetized monkeys. We show that, in addition to the aforementioned failures, previous models also grossly overestimate the force exerted by passive eye muscles during smooth elongations similar to those experienced during normal eye movements. Importantly, we also show that the force exerted by a muscle following an elongation is largely independent of the elongation itself, and it is mostly determined by the final muscle length. These additional findings conclusively rule out the use of classical viscoelastic models to mimic the mechanical properties of passive eye muscles. We describe here a new model that extends previous ones using principles derived from research on thixotropic materials. This model is able to account reasonably well for our data, and could thus be incorporated into models of the eye plant.