Cargando…

miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer

BACKGROUND: We have recently identified down-regulated microRNAs including miR-145 and miR-133a in bladder cancer (BC). The aim of this study is to determine the genes targeted by miR-145, which is the most down-regulated microRNA in BC. METHODS: We focused on fascin homologue 1 (FSCN1) from the gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiyomaru, T, Enokida, H, Tatarano, S, Kawahara, K, Uchida, Y, Nishiyama, K, Fujimura, L, Kikkawa, N, Seki, N, Nakagawa, M
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833258/
https://www.ncbi.nlm.nih.gov/pubmed/20160723
http://dx.doi.org/10.1038/sj.bjc.6605570
Descripción
Sumario:BACKGROUND: We have recently identified down-regulated microRNAs including miR-145 and miR-133a in bladder cancer (BC). The aim of this study is to determine the genes targeted by miR-145, which is the most down-regulated microRNA in BC. METHODS: We focused on fascin homologue 1 (FSCN1) from the gene expression profile in miR-145 transfectant. The luciferase assay was used to confirm the actual binding sites of FSCN1 mRNA. Cell viability was evaluated by cell growth, wound-healing, and matrigel invasion assays. BC specimens were subjected to immunohistochemistry of FSCN1 and in situ hybridisation of miR-145. RESULTS: The miR-133a as well as miR-145 had the target sequence of FSCN1 mRNA by the database search, and both microRNAs repressed the mRNA and protein expression of FSCN1. The luciferase assay revealed that miR-145 and miR-133a were directly bound to FSCN1 mRNA. Cell viability was significantly inhibited in miR-145, miR-133a, and si-FSCN1 transfectants. In situ hybridisation revealed that miR-145 expression was markedly repressed in the tumour lesion in which FSCN1 was strongly stained. The immunohistochemical score of FSCN1 in invasive BC (n=46) was significantly higher than in non-invasive BC (n=20) (P=0.0055). CONCLUSION: Tumour suppressive miR-145 and miR-133a directly control oncogenic FSCN1 in BC.