Cargando…

Development of the body condition score system in Murrah buffaloes: validation through ultrasonic assessment of body fat reserves

The body condition score (BCS) system is a subjective scoring method of evaluating the energy reserves of dairy animals to provide better understanding of biological relationships between body fat, milk production and reproduction. This method helps in adopting the optimum management practices to de...

Descripción completa

Detalles Bibliográficos
Autores principales: Alapati, Anitha, Kapa, Sarjan Rao, Jeepalyam, Suresh, Rangappa, Srinivasa Moorthy Patrapalle, Yemireddy, Kotilinga Reddy
Formato: Texto
Lenguaje:English
Publicado: The Korean Society of Veterinary Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833424/
https://www.ncbi.nlm.nih.gov/pubmed/20195058
http://dx.doi.org/10.4142/jvs.2010.11.1.1
Descripción
Sumario:The body condition score (BCS) system is a subjective scoring method of evaluating the energy reserves of dairy animals to provide better understanding of biological relationships between body fat, milk production and reproduction. This method helps in adopting the optimum management practices to derive maximum production and maintain optimum health of the livestock. In this study, a new BCS system was developed for Murrah buffaloes. The skeletal check points were identified by studying the anatomical features and amount of fat reserves in slaughtered animals. The scores were assigned from 1 to 5 based on the amount of fat reserves in slaughtered animals. A score of 1 represents least and 5 represents most amount of fat. The skeletal check points identified were ordered based on the amount of carcass fat reserves and scores assigned to prepare a preliminary BCS chart on a 1 to 5 scale at 0.25 increments. The BCS chart was further modified by eliminating the skeletal check points at which the fat reserves were less evident on palpation in most of the buffaloes and a new BCS chart on a 1 to 5 scale at 0.5 increments examining eight skeletal check points was developed. The new BCS system developed was tested for precision in 10 buffaloes for each point of the 1-5 scale by ultrasonographic measurements of body fat reserves. Ultrasonographic measurements showed that as the BCS increased, the amount of fat reserves also increased (p < 0.01), indicating that the BCS adequately reflected the amount of actual fat reserves. BCS was significantly correlated (r = 0.860) with the carcass fat reserves as well as the ultrasonographic fat reserves (r = 0.854).