Cargando…
NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation
BACKGROUND: Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834593/ https://www.ncbi.nlm.nih.gov/pubmed/20109190 http://dx.doi.org/10.1186/1471-2091-11-7 |
Sumario: | BACKGROUND: Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. RESULTS: We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues) involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. CONCLUSIONS: These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role. |
---|